
1

Statistical Language Modeling using 

SRILM Toolkit

Presented by:
Kamal Eldin Mahmoud 

1



2

AGENDA

 Introduction 

 Basic SRILM Tools

 ngram-count

 ngram

 ngram-merge

 Basic SRILM file format 

 ngram-format

 nbest-format 22



3

AGENDA

Basic SRILM Scripts

 Training-scripts

 lm-scripts

 ppl-scripts

33



444

➢ SRILM is a collection of C++ libraries, executable 

programs, and helper scripts. 

➢ The toolkit supports creation and evaluation of a 

variety of language model types based on N-gram 

statistics.

➢The main purpose of SRILM is to support language 

model estimation and evaluation. 

➢ Since most LMs in SRILM are based on N-gram 

statistics, the tools to accomplish these two purposes 

are named ngram-count and ngram, respectively. 

Introduction 



555

Introduction

➢A standard LM (trigram with Good-Turing 

discounting and Katz backoff for smoothing) would be 

created by

ngram-count -text TRAINDATA -lm LM

➢The resulting LM may then be evaluated on a test 

corpus using

ngram -lm LM -ppl TESTDATA -debug 0



6

Basic SRILM Tools



777

ngram-count

ngram-count generates and manipulates N-gram 

counts, and estimates N-gram language models from 

them. 

Syntax: 

Ngram-count  [ -help ]   option ...



888

ngram-count options 

Each filename argument can be an ASCII file, or a 

compressed file (name ending in .Z or .gz)

-help 

Print option summary. 

-version 

Print version information. 

-order n 

Set the maximal order (length) of N-grams to count. 

This also determines the order of the estimated LM, 

if any. The default order is 3. 

-memuse 

Print memory usage statistics. 



999

ngram-count options 

-vocab file 

Read a vocabulary from file. 

-vocab-aliases file 

Reads vocabulary alias definitions from file, 

consisting of lines of the form 

 alias    word

 This causes all tokens alias to be mapped to word. 

-write-vocab file

-write-vocab-index file 

Write the vocabulary built in the counting process to 

file.



101010

ngram-count counting options 

-tolower 

Map all vocabulary to lowercase. 

-text textfile 

Generate N-gram counts from text file. 

-no-sos 

Disable the automatic insertion of start-of-sentence 

tokens in N-gram counting. 

-no-eos 

Disable the automatic insertion of end-of-sentence 

tokens in N-gram counting. 

-read countsfile 

Read N-gram counts from a file. 



111111

ngram-count counting options 

-read-google dir 

Read N-grams counts from an indexed directory 

structure rooted in dir, in a format developed by 

Google. The corresponding directory structure can 

be created using the script make-google-ngrams . 

 

-write file 

-write-binary file

-write-order n

-writen file 

Write total counts to file.

-sort 

Output counts in lexicographic order, as required for 

ngram-merge. 



121212

ngram-count lm options 

-lm lmfile 

-write-binary-lm 

Estimate a backoff N-gram model from the total 

counts, and write it to lmfile . 

-unk 

Build an ``open vocabulary'' LM.  

-map-unk word 

Map out-of-vocabulary words to word. 



131313

ngram-count lm options 

-cdiscountn discount 

Use Ney's absolute discounting for N-grams of order 

n, using discount as the constant to subtract. 

-wbdiscountn 

Use Witten-Bell discounting for N-grams of order n.  

-ndiscountn 

 Use Ristad's natural discounting law for N-grams of 

order n. 

-addsmoothn delta 

Smooth by adding delta to each N-gram count. 



141414

ngram-count lm options 

-kndiscountn 

Use Chen and Goodman's modified Kneser-Ney 

discounting for N-grams of order n. 

-kn-counts-modified 

Indicates that input counts have already been 

modified for Kneser-Ney smoothing. 

-interpolaten 

 Causes the discounted N-gram probability estimates 

at the specified order n to be interpolated with lower-

order estimates. Only Witten-Bell, absolute 

discounting, and (original or modified) Kneser-Ney 

smoothing currently support interpolation. 



151515

ngram

Ngram performs various operations with N-gram-based 

and related language models, including sentence 

scoring, and perplexity computation. 

Syntax:

ngram [ -help ] option ... 



161616

ngram options 

-help 

Print option summary. 

-version 

Print version information. 

-order n 

Set the maximal N-gram order to be used, by default 3.  

-memuse 

Print memory usage statistics for the LM. 



171717

ngram options 

The following options determine the type of LM to 

be used. 

-null 

Use a `null' LM as the main model (one that gives 

probability 1 to all words). 

-use-server S 

Use a network LM server as the main model. 

-lm file 

Read the (main) N-gram model from file.



181818

ngram options 

-tagged 

Interpret the LM as containing word/tag N-grams. 

-skip 

Interpret the LM as a ``skip'' N-gram model. 

-classes file 

Interpret the LM as an N-gram over word classes. 

-factored 

Use a factored N-gram model.

-unk 

Indicates that the LM is an open-class LM. 



191919

ngram options 

-ppl textfile 

Compute sentence scores (log probabilities) and 

perplexities from the sentences in textfile. 

The -debug option controls the level of detail printed. 

-debug 0 

Only summary statistics for the entire corpus are 

printed. 

 

-debug 1 

Statistics for individual sentences are printed. 



202020

ngram options 

-debug 2 

Probabilities for each word, plus LM-dependent details 

about backoff used etc., are printed. 

-debug 3 

Probabilities for all words are summed in each context, 

and the sum is printed.  



212121

ngram options 

-nbest file 

Read an N-best list in nbest-format and rerank the 

hypotheses using the specified LM. The reordered N-

best list is written to stdout. 

-nbest-files filelist 

Process multiple N-best lists whose filenames are listed 

in filelist. 

-write-nbest-dir dir 

Deposit rescored N-best lists into directory dir, using 

filenames derived from the input ones. 



222222

ngram options 

-decipher-nbest 

Output rescored N-best lists in Decipher 1.0 format, 

rather than SRILM format. 

-no-reorder 

Output rescored N-best lists without sorting the 

hypotheses by their new combined scores. 

-max-nbest n 

Limits the number of hypotheses read from an N-best 

list. 



232323

ngram options 

-no-sos 

Disable the automatic insertion of start-of-sentence 

tokens for sentence probability computation. 

-no-eos 

Disable the automatic insertion of end-of-sentence 

tokens for sentence probability computation. 



242424

ngram-merge

ngram-merge reads two or more lexicographically 

sorted N-gram count files  and outputs the merged, 

sorted counts. 

Syntax:

ngram-merge [-help] [-write outfile ] [ -float-counts ] 

\ [ -- ] infile1 infile2 ... 



252525

Ngram-merge options 

-write outfile 

Write merged counts to outfile. 

-float-counts 

Process counts as floating point numbers.

-- 

Indicates the end of options, in case the first input 

filename begins with ``-''. 



26

Basic SRILM file 

format



272727

ngram-format

ngram-format File format for ARPA backoff N-gram models 

\data\

ngram 1=n1

ngram 2=n2.

..

ngram N=nN

\1-grams:

p w  [bow]

...\

2-grams:

p w1 w2  [bow]

...

\N-grams:

p w1 ... wN

...

\end\ 



282828

nbest-format

SRILM currently understands three different formats 

for lists of N-best hypotheses for rescoring or 1-best 

hypothesis extraction. The first two formats originated 

in the SRI Decipher(TM) recognition system, the third 

format is particular to SRILM. 

The first format consists of the header 

  NBestList1.0 

followed by one or more lines of the form 

 (score) w1 w2 w3 ... 

where score is a composite acoustic/language model 

score from the recognizer, on the bytelog scale. 



292929

nbest-format

The second Decipher(TM) format is an extension of 

the first format that encodes word-level scores and 

time alignments. It is marked by a header of the form 

 NBestList2.0

 The hypotheses are in the format 

 (score) w1 ( st: st1 et: et1 g: g1 a: a1 ) w2 ... 

where words are followed by start and end times, 

language model and acoustic scores (bytelog-scaled), 

respectively. 



303030

nbest-format

The third format understood by SRILM lists 

hypotheses in the format 

 ascore lscore nwords w1 w2 w3 ... 

where the first three columns contain the acoustic 

model log probability, the language model log 

probability, and the number of words in the hypothesis 

string, respectively. All scores are logarithms base 10. 



31

Basic SRILM Scripts



323232

Training-scripts

These scripts perform convenience tasks associated 

with the training of language models. 

get-gt-counts 

Syntax

get-gt-counts max=K out=name [ counts ... ] > 

gtcounts 

Computes the counts-of-counts statistics needed in 

Good-Turing smoothing. The frequencies of counts up 

to K are computed (default is 10). The results are 

stored in a series of files with root name, 

name.gt1counts,..., name.gtNcounts. 



333333

Training-scripts

make-gt-discounts 

Santax:

make-gt-discounts min=min max=max gtcounts 
Takes one of the output files of get-gt-counts and 

computes the corresponding Good-Turing discounting 

factors. The output can then be passed to ngram-count 

via the -gtn options to control the smoothing during 

model estimation. 



343434

Training-scripts

make-abs-discount

Syntax 

make-abs-discount gtcounts 

 Computes the absolute discounting constant needed 

for the ngram-count -cdiscountn options. Input is 

one of the files produced by get-gt-counts. 



353535

Training-scripts

make-kn-discount

Syntax

make-kn-discounts min=min gtcounts

 Computes the discounting constants used by the 

modified Kneser-Ney smoothing method. Input is one 

of the files produced by get-gt-counts.



363636

Training-scripts

make-batch-counts

Syntax

make-batch-counts file-list \ [ batch-size [ filter [ 

count-dir [ options ... ] ] ] ]

 Performs the first stage in the construction of very 

large N-gram count files. file-list is a list of input text 

files. Lines starting with a `#' character are ignored. 

These files will be grouped into batches of size batch-

size (default 10). The N-gram count files are left in 

directory count-dir (``counts'' by default), where they 

can be found by a subsequent run of merge-batch-

counts. 



373737

Training-scripts

merge-batch-counts

Syntax

merge-batch-counts count-dir [ file-list|start-iter ] 

Completes the construction of large count files. 

Optionally, a file-list of count files to combine can be 

specified. A number as second argument restarts the 

merging process at iteration start-iter. 



383838

Training-scripts

make-google-ngrams

Syntax 

make-google-ngrams [ dir=DIR ] [ per_file=N ] [ 

gzip=0 ] \ [ yahoo=1 ] [ counts-file ... ] 

Takes a sorted count file as input and creates an 

indexed directory structure, in a format developed by 

Google to store very large N-gram collections. 

Optional arguments specify the output directory dir 

and the size N of individual N-gram files (default is 10 

million N-grams per file). The gzip=0 option writes 

plain. The yahoo=1 option may be used to read N-

gram count files in Yahoo-GALE format. 



393939

Training-scripts

tolower-ngram-counts

Syntax

tolower-ngram-counts [ counts-file ... ] 

Maps an N-gram counts file to all-lowercase. No 

merging of N-grams that become identical in the 

process is done. 



404040

Training-scripts

reverse-ngram-counts

Syntax

reverse-ngram-counts [ counts-file ... ] 

Reverses the word order of N-grams in a counts file or 

stream.

reverse-text

Syntax

reverse-text [ textfile ... ] 

Reverses the word order in text files, line-by-line. 



414141

Training-scripts

compute-oov-rate 

Syntax

compute-oov-rate vocab [ counts ... ]

 Determines the out-of-vocabulary rate of a corpus 

from its unigram counts and a target vocabulary list in 

vocab. 



424242

lm-scripts

add-dummy-bows

Syntax 

add-dummy-bows [ lm-file ] > new-lm-file 

Adds dummy backoff weights to N-grams, even 

where they are not required, to satisfy some 

broken software that expects backoff weights on all 

N-grams (except those of highest order). 



434343

lm-scripts

change-lm-vocab

Syntax
change-lm-vocab -vocab vocab  -lm lm-file  -write-lm 

new-lm-file \ [ -tolower ] [ -subset ] [ ngram-options ... ] 

Modifies the vocabulary of an LM to be that in vocab. 

Any N-grams containing OOV words are removed, 

new words receive a unigram probability, and the 

model is renormalized. The -tolower option causes 

case distinctions to be ignored. -subset only 

removes words from the LM vocabulary, without 

adding any.  



444444

lm-scripts

make-lm-subset

Syntax

make-lm-subset count-file|- [ lm-file |- ] > new-lm-file 

Forms a new LM containing only the N-grams found 

in the count-file. The result still needs to be 

renormalized with ngram -renorm . 



454545

lm-scripts

get-unigram-probs

Syntax

get-unigram-probs [ linear=1 ] [ lm-file ]

 Extracts the unigram probabilities in a simple table 

format from a backoff language model. The linear=1 

option causes probabilities to be output on a linear 

(instead of log) scale. 



464646

ppl-scripts

These scripts process the output of the ngram option 

-ppl to extract various useful information. 

add-ppls 

Syntax

add-ppls [ ppl-file ... ]

 Takes several ppl output files and computes an 

aggregate perplexity and corpus statistics. 



474747

ppl-scripts

subtract-ppls 

Syntax

subtract-ppls ppl-file1 [ ppl-file2 ... ]

 Similarly computes an aggregate perplexity by 

removing the statistics of zero or more ppl-file2 from 

those in ppl-file1. 



484848

ppl-scripts

compare-ppls

Syntax

compare-ppls [ mindelta=D ] ppl-file1 ppl-file2 

Tallies the number of words for which two language 

models produce the same, higher, or lower 

probabilities. The input files should be ngram -

debug 2 -ppl output for the two models on the same 

test set. The parameter D is the minimum absolute 

difference for two log probabilities to be considered 

different. 



494949

ppl-scripts

compute-best-mix 

Syntax

compute-best-mix [ lambda='l1 l2 ...' ] 

[precision=P ] \ ppl-file1 [ ppl-file2 ... ] 

Takes the output of several ngram -debug 2 –ppl 

runs on the same test set and computes the optimal 

interpolation weights for the corresponding models. 

Initial weights may be specified as l1 l2 .... The 

computation is iterative and stops when the 

interpolation weights change by less than P (default 

0.001). 



505050

ppl-scripts

compute-best-sentence-mix 

Syntax

compute-best-sentence-mix [ lambda='l1 l2 ...' ] 

[precision=P ] \ ppl-file1 [ ppl-file2 ... ]

similarly optimizes the weights for sentence-level 

interpolation of LMs. It requires input files generated 

by ngram -debug 1 -ppl. 



51

THANK YOU ☺

51


	Slide 1: Statistical Language Modeling using SRILM Toolkit
	Slide 2: AGENDA
	Slide 3: AGENDA
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Thank You 

