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Why a language model?

• Suppose a machine is required to translate: 

“The human Race”. 

• The word “Race” has at least 2 meanings, which 

one to choose?

• Obviously, the choice depends on the “history” 

or the “context” preceding the word “Race”. E.g., 

“the human race” versus “the dogs race”.

• A statistical language model can solve this 

ambiguity by giving higher probability to the 

correct meaning.
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Probability in brief

• Joint probability: P(A,B) is the probability 

that events A and B are simultaneously 

true (observed together).

• Conditional probability: P(A|B): is the 

probability that A is true given that B is 

true (observed). 



5

Relation between joint and conditional probabilities

• BAYES RULE:

P(A|B) = P(A,B)/P(B)

P(B|A) = P(A,B)/P(A)

Or;

P(A,B)= P(A).P(B|A) = P(B).P(A|B)
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Chain Rule

• The joint probability: 
P(A,B,C,D)=P(A).P(B|A).P(C|A,B).P(D|A,B,C)

• This will lend itself to the language modeling paradigm 
as we will be concerned by the joint probability of the 
occurrence of a word-sequence (W1,W2,W3,….Wn):

    P(W1,W2,W3,….Wn) 

    which will be put in terms of conditional 
probability terms: 

• P(W1).P(W2|W1).P(W3|W1,W2)………

        (More of this later)
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Language Modeling?

In the narrow sense, statistical language modeling 
is concerned by estimating the joint probability of 
a word sequence . P(W1,W2,W3,….Wn) 

 This is always converted into conditional probs:                           
P(Next Word | History)

                                  e.g., P(W3|W1,W2)

i.e., can we predict the next word given the 
previous words that have been observed?

In other words, if we have a History, find the Next-
Word that gives the highest prob.          
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Word Prediction

• Guess the next word...

       ... It is too late I want to go ???

... I notice three guys standing on the ???

• There are many sources of knowledge that can 

be used to inform this task, including arbitrary 

world knowledge and deeper history (It is too 

late)

• But it turns out that we can do pretty well by 

simply looking at the preceding words and 

keeping track of some fairly simple counts.
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Word Prediction
• We can formalize this task using what are 

called N-gram models.

• N-grams are token sequences of length N.

• Our 2nd example contains the following 2-

grams (Bigrams)

– (I notice), (notice three), (three guys), (guys 

standing), (standing on), (on the)

• Given knowledge of counts of N-grams 

such as these, we can guess likely next 

words in a sequence.
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N-Gram Models

• More formally, we can use knowledge of 

the counts of N-grams to assess the 

conditional probability of candidate words 

as the next word in a sequence.

• In doing so, we actually use them to 

assess the joint probability of an entire 

sequence of words. (chain rule).
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Applications

• It turns out that being able to predict the next 
word (or any linguistic unit) in a sequence is an 
extremely useful thing to be able to do.

• As we’ll see, it lies at the core of the following 
applications
– Automatic speech recognition

– Handwriting and character recognition

– Spelling correction

– Machine translation

– Information retrieval

– And many more.
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Machine Translation



SMT Architecture
Based on Bayes´ Decision 

Rule:

ê = argmax{ p(e | f) }
= argmax{ p(e) p(f | e) }
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Counting 

• Simple counting lies at the core of any 

probabilistic approach. So let’s first take a 

look at what we’re counting.

– He stepped out into the hall, was delighted to 

encounter a water brother.

• 13 tokens, 15 if we include “,” and “.” as separate 

tokens.

• Assuming we include the comma and period, how 

many bigrams are there?
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Counting
• Not always that simple

– I do uh main- mainly business data processing

• Spoken language poses various challenges.

– Should we count “uh” and other fillers as tokens?

– What about the repetition of “mainly”? Should such do-

overs count twice or just once?

– The answers depend on the application.

• If we’re focusing on something like ASR to support indexing 

for search, then “uh” isn’t helpful (it’s not likely to occur as a 

query).

• But filled pauses are very useful in dialog management, so 

we might want them there.
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Counting: Types and Tokens

• How about

– They picnicked by the pool, then lay back on 

the grass and looked at the stars.

• 18 tokens (again counting punctuation)

• But we might also note that “the” is used 3 

times, so there are only 16 unique types 

(as opposed to tokens).

• In going forward, we’ll have occasion to 

focus on counting both types and tokens 

of both words and N-grams.



18

Counting: Wordforms

• Should “cats” and “cat” count as the same 

when we’re counting?

• How about “geese” and “goose”?

• Some terminology:

– Lemma: a set of lexical forms having the 

same stem, major part of speech, and rough 

word sense: (car, cars, automobile)

– Wordform: fully inflected surface form

• Again, we’ll have occasion to count both 

lemmas, morphemes, and wordforms
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Counting: Corpora
• So what happens when we look at large 

bodies of text instead of single utterances?

• Brown et al (1992) large corpus of English 
text
– 583 million wordform tokens

– 293,181 wordform types

• Google
– Crawl of 1,024,908,267,229 English tokens

– 13,588,391 wordform types

• That seems like a lot of types...  After all, even large dictionaries of English 
have only around 500k types. Why so many here?•Numbers

•Misspellings
•Names
•Acronyms
•etc



20

Language Modeling

• Back to word prediction

• We can model the word prediction task as 
the ability to assess the conditional 
probability of a word given the previous 
words in the sequence 

– P(wn|w1,w2…wn-1)

• We’ll call a statistical model that can 
assess this a Language Model
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Language Modeling

• How might we go about calculating such a 

conditional probability? 

– One way is to use the definition of conditional 

probabilities and look for counts. So to get

– P(the | its water is so transparent that)

• By definition that’s

Count(its water is so transparent that the)

  Count(its water is so transparent that)

We can get each of those counts in a large 

corpus.
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Very Easy Estimate

• According to Google those counts are 5/9.

– Unfortunately... 2 of those were to these 

slides... So maybe it’s really   3/7

– In any case, that’s not terribly convincing due 

to the small numbers involved.
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Language Modeling

• Unfortunately, for most sequences and for 

most text collections we won’t get good 

estimates from this method.

– What we’re likely to get is 0. Or worse 0/0.

• Clearly, we’ll have to be a little more 

clever.

– Let’s use the chain rule of probability

– And a particularly useful independence 

assumption.
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The Chain Rule

• Recall the definition of conditional probabilities

• Rewriting:

• For sequences...
– P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• In general 
– P(x1,x2,x3,…xn) = 

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)(

),(
)|(

BP

BAP
BAP =

)|().(),( BAPBPBAP =
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The Chain Rule

P(its water was so transparent)=
P(its)*

    P(water|its)*

       P(was|its water)*

          P(so|its water was)*

             P(transparent|its water was so)
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Unfortunately

• There are still a lot of possible sentences

• In general, we’ll never be able to get 

enough data to compute the statistics for 

those longer prefixes

– Same problem we had for the strings 

themselves
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Independence Assumption

• Make the simplifying assumption

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|a)

• Or maybe

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|saw,a)

• That is, the probability in question is 
independent of its earlier history.



28

Independence Assumption

• This particular kind of independence assumption 
is called a Markov assumption after the Russian 
mathematician Andrei Markov.
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So for each component in the product replace with the 

approximation (assuming a prefix of N)

 Bigram version

 

P(wn |w1
n−1)  P(wn |wn−N +1

n−1 )

Markov Assumption

 

P(wn |w1
n−1)  P(wn |wn−1)
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Estimating Bigram Probabilities

• The Maximum Likelihood 

Estimate (MLE):

 

P(wi |wi−1) =
count(wi−1,wi)

count(wi−1)
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Normalization

• For N-gram models to be probabilistically correct 
they have to obey prob. Normalization 
constraints:

• The sum over all words for the same context 
(history) must be 1.

• The context may be one word (bigram) or two 
words (trigram) or more.


−−

=
jallover

ij ContextWP 1)|(
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An Example: bigrams

• <s> I am Sam </s>

• <s> Sam I am </s>

• <s> I do not like green eggs and ham </s>
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estimates depend on the corpus

• The maximum likelihood estimate of some parameter of 
a model M from a training set T

– Is the estimate that maximizes the likelihood of the training 
set T given the model M

• Suppose the word Chinese occurs 400 times in a corpus 
of a million words (Brown corpus)

• What is the probability that a random word from some 
other text from the same distribution will be “Chinese”

• MLE estimate is 400/1000000 = .004

– This may be a bad estimate for some other corpus
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Berkeley Restaurant Project 

Sentences examples

• can you tell me about any good cantonese restaurants 

close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are 

available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day
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Bigram Counts

• Out of 9222 sentences

– e.g. “I want” occurred 827 times
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Bigram Probabilities
• Divide bigram counts by prefix unigram 

counts to get probabilities.
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examples

• P(Want | I ) = C(I Want) / C(I)

 = 827/2533 = 0.33

P(Food | Chinese) = C(Chinese Food) / 

C(Chinese)

= 82/158 = 0.52
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Bigram Estimates of Sentence 

Probabilities

• P(<s> I want english food </s>) =

   P(i|<s>)*

       P(want|I)*

         P(english|want)*

           P(food|english)*

             P(</s>|food)*

              =.000031
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Evaluation

• How do we know if our models are any 
good?

– And in particular, how do we know if one 
model is better than another?
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Evaluation

• Standard method

– Train parameters of our model on a training set.

– Look at the models performance on some new data

• This is exactly what happens in the real world; we 

want to know how our model performs on data we 

haven’t seen

– So use a test set. A dataset which is different than 

our training set, but is drawn from the same source

– Then we need an evaluation metric to tell us how 

well our model is doing on the test set.

• One such metric is  perplexity
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Unknown Words

• But once we start looking at test data, we’ll 
run into words that we haven’t seen before 
(pretty much regardless of how much 
training data you have) (zero unigrams)

• With an Open Vocabulary task

– Create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L, of size V

– From a dictionary or 

– A subset of terms from the training set

• At text normalization phase, any training word not in L changed to  
<UNK>

• Now we count that like a normal word

– At test time
• Use <UNK> counts for any word not in training
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Perplexity

• Perplexity is the probability 

of the test set (assigned by 

the language model), 

normalized by the number 

of words:

• Chain rule:

• For bigrams:

• Minimizing perplexity is the same as maximizing 
probability
– The best language model is one that best predicts 

an unseen test set
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Lower perplexity means a better 

model

• Training 38 million words, test 1.5 million 

words, WSJ (Wall-Street Journal)
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Evaluating N-Gram Models

• Best evaluation for a language model

– Put model A into an application

• For example, a speech recognizer

– Evaluate the performance of the 
application with model A

– Put model B into the application and 
evaluate

– Compare performance of the application 
with the two models

– Extrinsic evaluation
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Difficulty of extrinsic (in-vivo) 

evaluation of  N-gram models
• Extrinsic evaluation

– This is really time-consuming

– Can take days to run an experiment

• So
– To evaluate N-grams we often use an intrinsic 

evaluation, an approximation called perplexity

– But perplexity is a poor approximation unless the test 
data looks similar to the training data

– So is generally only useful in pilot experiments

– But still, there is nothing like the real experiment!
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N-gram Zero Counts

• For the English language, 

– V2= 844 million possible bigrams...

–  So, for a medium size training data, e.g., 

Shakespeare novels, 300,000 bigrams were found 

Thus, 99.96% of the possible bigrams were never 

seen (have zero entries in the table)

– Does that mean that any test sentence that contains 

one of those bigrams should have a probability of 0?
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N-gram Zero Counts

• Some of those zeros are really zeros... 
– Things that really can’t or shouldn’t happen.

• On the other hand, some of them are just rare events. 
– If the training corpus had been a little bigger they would have had a 

count (probably a count of 1).

• Zipf’s Law (long tail phenomenon):
– A small number of events occur with high frequency

– A large number of events occur with low frequency

– You can quickly collect statistics on the high frequency events

– You might have to wait an arbitrarily long time to get valid statistics on 
low frequency events

• Result:
– Our estimates are sparse ! We have no counts at all for the vast bulk 

of things we want to estimate!

• Answer:
– Estimate the likelihood of unseen (zero count) N-grams! 

– N-gram Smoothing techniques



48

Laplace Smoothing

• Also called add-one smoothing

• Just add one to all the counts!

• This adds extra V observations 

(V  is vocab. Size)

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

(making the volume N again)

)(

).1(1

VN

Nci

N +

+
=LaplaceP
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Laplace-Smoothed Bigram Counts
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Laplace-Smoothed Bigram 

Probabilities
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Reconstructed Counts
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Big Change to the Counts!

• C(want to) went from 608 to 238!

• P(to|want) from .66 to .26!

• Discount d= c*/c

– d for “Chinese food” = 0.1 !!! A 10x reduction

– So in general, Laplace is a blunt instrument

– Could use more fine-grained method (add-k)

• But Laplace smoothing not used for N-grams, as we 

have much better methods

• Despite its flaws, Laplace (add-k) is however still used to 

smooth other probabilistic models in NLP, especially

– For pilot studies

– in domains where the number of zeros isn’t so huge.
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Better Smoothing

• Intuition used by many smoothing 

algorithms, for example;

– Good-Turing

– Kneyser-Ney

– Witten-Bell

• Is to use the count of things we’ve seen 

once to help estimate the count of things 

we’ve never seen
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Good-Turing 
Josh Goodman Intuition

• Imagine you are fishing
– There are 8 species in this waters: carp, perch, 

whitefish, trout, salmon, eel, catfish, bass

• You have caught 
– 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel 

= 18 fish

• How likely is it that the next fish caught is from a new 
species (one not seen in our previous catch)?

– 3/18        (3 is number of events that seen once)

• Assuming so, how likely is it that next species is trout?

– Must be less than 1/18 because we just stole 3/18 of 
our probability mass to use on unseen events
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Good-Turing
Notation: Nx is the frequency-of-frequency-x

So N10=1

Number of fish species seen 10 times is 1 (carp)

N1=3

Number of fish species seen 1 time is 3 (trout, salmon, 

eel)

To estimate total number of unseen species (seen 0 

times)

Use number of species (bigrams) we’ve seen once (i.e. 3)

So, the estimated count c* for <unseen> is 3. 

All other estimates are adjusted (down) to account for the 

stolen mass given for the unseen events, using the formula:
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GT Fish Example
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Bigram Frequencies of 

Frequencies and 

GT Re-estimates

AP Newswire: 22million words,   Berkeley: 9332 sentences
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Backoff and Interpolation

• Another really useful source of knowledge

• If we are estimating:

– trigram p(z|x,y) 

– but count(xyz) is zero

• Use info from:

– Bigram p(z|y)

• Or even:

– Unigram p(z)

• How to combine this trigram, bigram, 
unigram info in a valid fashion?
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Backoff Vs. Interpolation

1. Backoff: use trigram if you have it, 

otherwise bigram, otherwise unigram

2. Interpolation: mix all three by weights
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Interpolation

• Simple interpolation

• Lambdas conditional on context:
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How to Set the Lambdas?
• Use a held-out, or development corpus

• Choose lambdas which maximize the 

probability of some held-out data

– I.e. fix the N-gram probabilities

– Then search for lambda values that when 

plugged into previous equation give largest 

probability for held-out set

– Can use EM to do this search

– Can use direct search methods (Genetic, 

Swarm, etc…)
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Katz Backoff (very popular)
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Why discounts P* and alpha?

• MLE probabilities sum to 1

• So if we used MLE probabilities but backed off to 

lower order model when MLE prob is zero we 

would be adding extra probability mass (it is like 

in smoothing), and total probability would be 

greater than 1. So, we have to do discounting.
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OOV words: <UNK> word

• Out Of Vocabulary = OOV words

• create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L 
changed to  <UNK>

• Now we train its probabilities like a normal word

– At decoding time
• If text input: Use UNK probabilities for any word not in 

training
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Other Approaches

Class-based LMs

Morpheme-based LMs

Skip LMs
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Class-based Language Models

• Standard word-based language models

• How to get robust n-gram estimates (                   )?

– Smoothing

• E.g. Kneyser-Ney, Good-Turing

– Class-based language models

p(w1,w2 ,...,wT ) = p(wt |w1,...,wt−1)
t=1

T



 p(wt |wt−1,wt−2 )
t=1

T



p(wt |wt−1)  p(wt |C(wt ))p(C(wt ) |C(wt−1))

p(wt |wt−1,wt−2 )
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Limitation of Word-based 

Language Models
• Words are inseparable whole units. 

– E.g. “book” and “books” are distinct vocabulary 

units

• Especially problematic in morphologically-

rich languages:

– E.g. Arabic, Finnish, Russian, Turkish

– Many unseen word contexts 

– High out-of-vocabulary rate

– High perplexity

Arabic k-t-b

Kitaab A book

Kitaab-iy My book

Kitaabu-hum Their book

Kutub Books
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Solution: Word as Factors

• Decompose words into “factors” (e.g. stems)

• Build language model over factors: P(w|factors)

• Two approaches for decomposition

– Linear 

• [e.g. Geutner, 1995]

– Parallel 

[Kirchhoff et. al., JHU Workshop 2002]

[Bilmes & Kirchhoff, NAACL/HLT 2003] 

WtWt-2 Wt-1

StSt-2 St-1

MtMt-2 Mt-1

stem suffixprefixsuffixstem



Different Kinds of Language 

Models
•cache language models (constantly adapting to a floating text) 

•trigger language models (can handle long distance effects) 

•POS-based language models, LM over POS tags

•class-based language models based on semantic classes 

•multilevel n-gram language models (mix many LM together) 

•interleaved language models (different LM for different parts 

of text) 

•morpheme-based language models (separate words into core 

and modifyers) 

•context free grammar language models (use simple and 

efficient LM-definition) 

•decision tree language models (handle long distance effects, 

use rules) 

•HMM language models (stochastic decision for combination of 

independent LMs) 

../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cache/cache.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/multilevel/multilevel.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/interleave/interleave.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/morpheme/morpheme.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cfg/cfg.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/tree/tree.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/hmm/hmm.html
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