Introduction to language modeling

Dr. Mohamed Waleed Fakhr AAST
Language Engineering Conference 22 December 2009

Topics

- Why a language model?
- Probability in brief
- Word prediction task
- Language modeling (N -grams)
- N-gram intro.
- Model evaluation
- Smoothing
- Other modeling approaches

Why a language model?

- Suppose a machine is required to translate: "The human Race".
- The word "Race" has at least 2 meanings, which one to choose?
- Obviously, the choice depends on the "history" or the "context" preceding the word "Race". E.g., "the human race" versus "the dogs race".
- A statistical language model can solve this ambiguity by giving higher probability to the correct meaning.

Probability in brief

- Joint probability: $P(A, B)$ is the probability that events A and B are simultaneously true (observed together).
- Conditional probability: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$: is the probability that A is true given that B is true (observed).

Relation between joint and conditional probabilities

- BAYES RULE:
$P(A \mid B)=P(A, B) / P(B)$
$P(B \mid A)=P(A, B) / P(A)$
Or;
$P(A, B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)$

Chain Rule

- The joint probability: $P(A, B, C, D)=P(A) \cdot P(B \mid A) \cdot P(C \mid A, B) \cdot P(D \mid A, B, C)$
- This will lend itself to the language modeling paradigm as we will be concerned by the joint probability of the occurrence of a word-sequence ($\left.\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}, \ldots . \mathrm{W}_{\mathrm{n}}\right)$: $P\left(W_{1}, W_{2}, W_{3}, \ldots . W_{n}\right)$ which will be put in terms of conditional probability terms:
- P(W1).P(W2|W1).P(W3|W1,W2)..........
(More of this later)

Language Modeling?

In the narrow sense, statistical language modeling is concerned by estimating the joint probability of a word sequence. $\mathrm{P}\left(\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}, \ldots . \mathrm{W}_{\mathrm{n}}\right)$
This is always converted into conditional probs: P(Next Word | History)
e.g., P(W3|W1,W2)
i.e., can we predict the next word given the previous words that have been observed?
In other words, if we have a History, find the NextWord that gives the highest prob.

Word Prediction

- Guess the next word...
... It is too late I want to go ???
... I notice three guys standing on the ???
- There are many sources of knowledge that can be used to inform this task, including arbitrary world knowledge and deeper history (It is too late)
- But it turns out that we can do pretty well by simply looking at the preceding words and keeping track of some fairly simple counts.

Word Prediction

- We can formalize this task using what are called N -gram models.
- N-grams are token sequences of length N.
- Our 2nd example contains the following 2grams (Bigrams)
- (I notice), (notice three), (three guys), (guys standing), (standing on), (on the)
- Given knowledge of counts of N-grams such as these, we can guess likely next words in a sequence.

N-Gram Models

- More formally, we can use knowledge of the counts of N-grams to assess the conditional probability of candidate words as the next word in a sequence.
- In doing so, we actually use them to assess the joint probability of an entire sequence of words. (chain rule).

Applications

- It turns out that being able to predict the next word (or any linguistic unit) in a sequence is an extremely useful thing to be able to do.
- As we'll see, it lies at the core of the following applications
- Automatic speech recognition
- Handwriting and character recognition
- Spelling correction
- Machine translation
- Information retrieval
- And many more.

ASR

$\arg \max P($ wordsequence \mid acoustics $)=$
wordsequence
$\underset{\text { wordsequence }}{\arg \max } \frac{P(\text { acoustics } \mid \text { wordsequence }) \times P(\text { wordsequence })}{P(\text { acoustics })}$
$\arg \max P($ acoustics \mid wordsequence $) \times P($ wordsequence $)$ wordsequence

Source Channel Model for Machine Translation

arg max $P($ wordsequence \mid acoustics $)=$
wordsequence
$\underset{\text { wordsequence }}{\arg \max } \frac{P \text { (acoustics } \mid \text { wordsequence)' } P \text { (wordsequence) }}{P(\text { acoustics })}$
$\arg \max P$ (acoustics \mid wordsequence)' P (wordsequence) wordsequence
$\arg \max P($ english \mid french $)=$
wordsequence
$\underset{\text { wordsequence }}{\arg \max } \frac{P(\text { french } \mid \text { english })^{\prime} P(\text { english })}{P(\text { french })}$
$\arg \max P(\text { french } \mid \text { english })^{\prime} \quad P$ (english)

SMT Architecture

Based on Bayes' Decision Rule:

Source Language Text

$$
\begin{aligned}
\hat{e} & =\operatorname{argmax}\{p(e \mid f)\} \\
& =\operatorname{argmax}\{p(e) p(f \mid e)\}
\end{aligned}
$$

Counting

- Simple counting lies at the core of any probabilistic approach. So let's first take a look at what we're counting.
- He stepped out into the hall, was delighted to encounter a water brother.
- 13 tokens, 15 if we include "," and "." as separate tokens.
- Assuming we include the comma and period, how many bigrams are there?

Counting

- Not always that simple
- I do uh main- mainly business data processing
- Spoken language poses various challenges.
- Should we count "uh" and other fillers as tokens?
- What about the repetition of "mainly"? Should such doovers count twice or just once?
- The answers depend on the application.
- If we're focusing on something like ASR to support indexing for search, then "uh" isn't helpful (it's not likely to occur as a query).
- But filled pauses are very useful in dialog management, so we might want them there.

Counting: Types and Tokens

- How about
- They picnicked by the pool, then lay back on the grass and looked at the stars.
- 18 tokens (again counting punctuation)
- But we might also note that "the" is used 3 times, so there are only 16 unique types (as opposed to tokens).
- In going forward, we'll have occasion to focus on counting both types and tokens of both words and N-grams.

Counting: Wordforms

- Should "cats" and "cat" count as the same when we're counting?
- How about "geese" and "goose"?
- Some terminology:
- Lemma: a set of lexical forms having the same stem, major part of speech, and rough word sense: (car, cars, automobile)
- Wordform: fully inflected surface form
- Again, we'll have occasion to count both lemmas, morphemes, and wordforms

Counting: Corpora

- So what happens when we look at large bodies of text instead of single utterances?
- Brown et al (1992) large corpus of English text
- 583 million wordform tokens
- 293,181 wordform types
- Google
- Crawl of 1,024,908,267,229 English tokens
- 13,588,391 wordform types
- That seems like a lot of tunoc Δ ftor all ovon large dictionaries of English have only around 500

```
-Numbers
-Misspellings
-Names
-Acronyms
\bulletetc
```


Language Modeling

- Back to word prediction
- We can model the word prediction task as the ability to assess the conditional probability of a word given the previous words in the sequence
$-P\left(w_{n} \mid w_{1}, w_{2} \ldots w_{n-1}\right)$
- We'll call a statistical model that can assess this a Language Model

Language Modeling

- How might we go about calculating such a conditional probability?
- One way is to use the definition of conditional probabilities and look for counts. So to get
- P (the | its water is so transparent that)
- By definition that's

Count(its water is so transparent that the) Count(its water is so transparent that)
We can get each of those counts in a large corpus.

Very Easy Estimate

- According to Google those counts are 5/9.
- Unfortunately... 2 of those were to these slides... So maybe it's really 3/7
- In any case, that's not terribly convincing due to the small numbers involved.

Language Modeling

- Unfortunately, for most sequences and for most text collections we won't get good estimates from this method.
- What we're likely to get is 0 . Or worse 0/0.
- Clearly, we'll have to be a little more clever.
- Let's use the chain rule of probability
- And a particularly useful independence assumption.

The Chain Rule

- Recall the definition of conditional probabilities
- Rewriting:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

$$
P(A, B)=P(B) \cdot P(A \mid B)
$$

- For sequences...

$$
-P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)
$$

- In general

$$
\begin{aligned}
& -P\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)= \\
& \quad P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1} \ldots x_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Chain Rule } \\
P\left(w_{1}^{n}\right)= & P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}^{2}\right) \ldots P\left(w_{n} \mid w_{1}^{n-1}\right) \\
= & \prod_{k=1}^{n} P\left(w_{k} \mid w_{1}^{k-1}\right)
\end{aligned}
$$

P (its water was so transparent)=

```
P(its)*
    P(waterlits)*
        P(was|its water)*
        P(solits water was)*
            P(transparent|its water was so)
```


Unfortunately

- There are still a lot of possible sentences
- In general, we'll never be able to get enough data to compute the statistics for those longer prefixes
- Same problem we had for the strings themselves

Independence Assumption

- Make the simplifying assumption
- P(lizard|the,other,day,I,was,walking,along,and ,saw,a) $=P($ lizard $\mid a)$
- Or maybe
- P(lizard|the,other,day,I,was,walking,along,and ,saw, a) $=\mathrm{P}($ lizard \mid saw, a$)$
- That is, the probability in question is independent of its earlier history.

Independence Assumption

- This particular kind of independence assumption is called a Markov assumption after the Russian mathematician Andrei Markov.

Markov Assumption

So for each component in the product replace with the approximation (assuming a prefix of N)

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)
$$

Bigram version

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right)
$$

Estimating Bigram Probabilities

- Tr

E

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

Normalization

- For N-gram models to be probabilistically correct they have to obey prob. Normalization constraints:

$$
\sum_{\text {over-all-j }} P\left(W_{j} \mid \text { Context }\right)=1
$$

- The sum over all words for the same context (history) must be 1.
- The context may be one word (bigram) or two words (trigram) or more.

An Example: bigrams

- <s> I am Sam </s>
- <s> Sam I am </s>
- <s> I do not like green eggs and ham </s>

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

$$
P\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)}{C\left(w_{n-1}\right)}
$$

estimates depend on the corpus

- The maximum likelihood estimate of some parameter of a model M from a training set T
- Is the estimate that maximizes the likelihood of the training set T given the model M
- Suppose the word Chinese occurs 400 times in a corpus of a million words (Brown corpus)
- What is the probability that a random word from some other text from the same distribution will be "Chinese"
- MLE estimate is $400 / 1000000=.004$
- This may be a bad estimate for some other corpus

Berkeley Restaurant Project Sentences examples

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Bigram Counts

- Out of 9222 sentences
- e.g. "I want" occurred 827 times

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Bigram Probabilities

- Divide bigram counts by prefix unigram counts to get probabilities.

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

examples

- $\mathrm{P}($ Want | I) = C(I Want) / C(I)
$=827 / 2533=0.33$

P(Food | Chinese) $=\mathrm{C}($ Chinese Food) $/$ C(Chinese)
$=82 / 158=0.52$

Bigram Estimates of Sentence Probabilities

- $\mathrm{P}(<\mathrm{s}>$ I want english food $</ s>)=$
$P(i \mid<s>)^{*}$
$P(\text { want } \mid 1)^{*}$
P (english|want)*
P (food|english)* P(</s>|food)* $=.000031$

Evaluation

- How do we know if our models are any good?
- And in particular, how do we know if one model is better than another?

Evaluation

- Standard method
- Train parameters of our model on a training set.
- Look at the models performance on some new data
- This is exactly what happens in the real world; we want to know how our model performs on data we haven't seen
- So use a test set. A dataset which is different than our training set, but is drawn from the same source
- Then we need an evaluation metric to tell us how well our model is doing on the test set.
- One such metric is perplexity

Unknown Words

- But once we start looking at test data, we'll run into words that we haven't seen before (pretty much regardless of how much training data you have) (zero unigrams)
- With an Open Vocabulary task
- Create an unknown word token <UNK>
- Training of <UNK> probabilities
- Create a fixed lexicon L, of size V
- From a dictionary or
- A subset of terms from the training set
- At text normalization phase, any training word not in L changed to <UNK>
- Now we count that like a normal word
- At test time
- Use <UNK> counts for any word not in training

Perplexity

- Perplexity is the probability $\operatorname{PP}(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}$ of the test set (assigned by the language model),

$$
=\sqrt[N]{\left.\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right.}\right)}
$$ normalized by the number of words:

- Chain rule:
- For bigrams:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}
$$

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

- Minimizing perplexity is the same as maximizing probability
- The best language model is one that best predicts an unseen test set

Lower perplexity means a better model

- Training 38 million words, test 1.5 million words, WSJ (Wall-Street Journal)

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Evaluating N-Gram Models

- Best evaluation for a language model
-Put model A into an application
- For example, a speech recognizer
-Evaluate the performance of the application with model A
-Put model B into the application and evaluate
-Compare performance of the application with the two models
- Extrinsic evaluation

Difficulty of extrinsic (in-vivo) evaluation of N -gram models

- Extrinsic evaluation
- This is really time-consuming
- Can take days to run an experiment
- So
- To evaluate N -grams we often use an intrinsic evaluation, an approximation called perplexity
- But perplexity is a poor approximation unless the test data looks similar to the training data
- So is generally only useful in pilot experiments
- But still, there is nothing like the real experiment!

N-gram Zero Counts

- For the English language,
- $\mathrm{V}^{2}=844$ million possible bigrams...
- So, for a medium size training data, e.g., Shakespeare novels, 300,000 bigrams were found Thus, 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Does that mean that any test sentence that contains one of those bigrams should have a probability of 0 ?

N-gram Zero Counts

- Some of those zeros are really zeros...
- Things that really can't or shouldn't happen.
- On the other hand, some of them are just rare events.
- If the training corpus had been a little bigger they would have had a count (probably a count of 1).
- Zipf's Law (long tail phenomenon):
- A small number of events occur with high frequency
- A large number of events occur with low frequency
- You can quickly collect statistics on the high frequency events
- You might have to wait an arbitrarily long time to get valid statistics on low frequency events
- Result:
- Our estimates are sparse ! We have no counts at all for the vast bulk of things we want to estimate!
- Answer:
- Estimate the likelihood of unseen (zero count) N-grams!
- \mathbf{N}-gram Smoothing techniques

taplacen senotno

- Also called add-one smoothing
- Just add one to all the counts!
- This adds extra V observations (V is vocab. Size)
- MLE estimate:

$$
P\left(w_{i}\right)=\frac{c_{i}}{N}
$$

- Laplace estimate: $P_{\text {Laplace }}\left(w_{i}\right)=\frac{c_{i}+1}{N+V} \quad P_{\text {Laplace }}=\frac{1}{N} \frac{(c i+1) \cdot N}{(N+V)}$
- Reconstructed counts: (making the volume N again)

$$
c_{i}^{*}=\left(c_{i}+1\right) \frac{N}{N+V}
$$

Laplace-Smoothed Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Laplace-Smoothed Bigram Probabilities

Reconstructed Counts

$$
c^{*}\left(w_{n-1} w_{n}\right)=\frac{\left[C\left(w_{n-1} w_{n}\right)+1\right] \times C\left(w_{n-1}\right)}{C\left(w_{n-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

$$
P(w 1 \mid w 2)=\frac{C(w 2 w 1)+1}{C(w 2)+V}=\frac{C(w 2)}{C(w 2)} \frac{C(w 2 w 1)+1}{C(w 2)+V}=\frac{1}{C(w 2)} \frac{C(w 2) \cdot[C(w 2 w 1)+1]}{[C(w 2)+V]}
$$

Big Change to the Counts!

- C(want to) went from 608 to 238 !
- P (to|want) from . 66 to .26 !
- Discount d= c*/c
- d for "Chinese food" $=0.1$!!! A 10x reduction
- So in general, Laplace is a blunt instrument
- Could use more fine-grained method (add-k)
- But Laplace smoothing not used for N-grams, as we have much better methods
- Despite its flaws, Laplace (add-k) is however still used to smooth other probabilistic models in NLP, especially
- For pilot studies
- in domains where the number of zeros isn't so huge.

Better Smoothing

- Intuition used by many smoothing algorithms, for example;
- Good-Turing
- Kneyser-Ney
- Witten-Bell
- Is to use the count of things we've seen once to help estimate the count of things we've never seen

Good-Turing Josh Goodman Intuition

- Imagine you are fishing
- There are 8 species in this waters: carp, perch, whitefish, trout, salmon, eel, catfish, bass
- You have caught
- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that the next fish caught is from a new species (one not seen in our previous catch)?
- 3/18
(3 is number of events that seen once)
- Assuming so, how likely is it that next species is trout?
- Must be less than $1 / 18$ because we just stole $3 / 18$ of our probability mass to use on unseen events

Good-Turing

Notation: Nx is the frequency-of-frequency-x

So N10=1

Number of fish species seen 10 times is 1 (carp)
N1=3
Number of fish species seen 1 time is 3 (trout, salmon, eel)

To estimate total number of unseen species (seen 0 times)
Use number of species (bigrams) we've seen once (i.e. 3) So, the estimated count c* for <unseen> is 3.
All other estimates are adjusted (down) to account for the stolen mass given for the unseen events, using the formula:

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

GT Fish Example

c	0	1	2
MLE p	$0 / 18$	$1 / 18$	$2 / 18$
c^{+}	$1 \times \frac{3}{T}=3$	$2 \times \frac{1}{3}=.67$	$3 \times \frac{1}{T}=3$
GT p^{*}	$\frac{3}{18}=.17$	$\frac{67}{18}=.037$	$\frac{3}{18}=.17$

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

Bigram Frequencies of Frequencies and GT Re-estimates

AP Newswire			Berkeley Restaurant一		
c (MLE)	N_{c}	$c^{*}(\mathrm{GT})$	c (MLE)	N_{c}	$c^{*}(\mathrm{GT})$
0	$74,671,100,000$	0.0000270	0	$2,081,496$	0.002553
1	$2,018,046$	0.446	1	5315	0.533960
2	449,721	1.26	2	1419	1.357294
3	188,933	2.24	3	642	2.373832
4	105,668	3.24	4	381	4.081365
5	68,379	4.22	5	311	3.781350
6	48,190	5.19	6	196	4.500000

AP Newswire: 22million words, Berkeley: 9332 sentences

Backoff and Interpolation

- Another really useful source of knowledge
- If we are estimating:
- trigram p(z|x,y)
- but count(xyz) is zero
- Use info from:
- Bigram p(z|y)
- Or even:
- Unigram p(z)
- How to combine this trigram, bigram, unigram info in a valid fashion?

Backoff Vs. Interpolation

1. Backoff: use trigram if you have it, otherwise bigram, otherwise unigram
2. Interpolation: mix all three by weights

Interpolation

- Simple interpolation

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-1} w_{n-2}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-1} w_{n-2}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

- Lambdas conditional on context:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

How to Set the Lambdas?

- Use a held-out, or development corpus
- Choose lambdas which maximize the probability of some held-out data
- I.e. fix the N-gram probabilities
- Then search for lambda values that when plugged into previous equation give largest probability for held-out set
- Can use EM to do this search
- Can use direct search methods (Genetic, Swarm, etc...)

Katz Backoff (very popular)

$$
P_{\text {katz }}\left(w_{n} \mid w_{n-N+1}^{n-1}\right)= \begin{cases}P^{*}\left(w_{n} \mid w_{n-N+1}^{n-1}\right), & \text { if } C\left(w_{n-N+1}^{n}\right)>0 \\ \alpha\left(w_{n-N+1}^{n-1}\right) P_{\text {katz }}\left(w_{n} \mid w_{n-N+2}^{n-1}\right), & \text { otherwise } .\end{cases}
$$

$$
\begin{aligned}
P_{\text {katz }}(z \mid x, y) & = \begin{cases}P^{*}(z \mid x, y), & \text { if } C(x, y, z)>0 \\
\alpha(x, y) P_{\text {katz }}(z \mid y), & \text { else if } C(x, y)>0 \\
P^{*}(z), & \text { otherwise. }\end{cases} \\
P_{\text {katz }}(z \mid y) & = \begin{cases}P^{*}(z \mid y), & \text { if } C(y, z)>0 \\
\alpha(y) P^{*}(z), & \text { otherwise. }\end{cases}
\end{aligned}
$$

Why discounts P^{*} and alpha?

- MLE probabilities sum to 1

$$
\sum_{i} P\left(w_{i} \mid w_{j} w_{k}\right)=1
$$

- So if we used MLE probabilities but backed off to lower order model when MLE prob is zero we would be adding extra probability mass (it is like in smoothing), and total probability would be greater than 1 . So, we have to do discounting.

OOV words: <UNK> word

- Out Of Vocabulary = OOV words
- create an unknown word token <UNK>
- Training of <UNK> probabilities
- Create a fixed lexicon L of size V
- At text normalization phase, any training word not in L changed to <UNK>
- Now we train its probabilities like a normal word
- At decoding time
- If text input: Use UNK probabilities for any word not in training

Other Approaches

Class-based LMs
Morpheme-based LMs Skip LMs

Class-based Language Models

- Standard word-based language models

$$
\begin{aligned}
p\left(w_{1}, w_{2}, \ldots, w_{T}\right) & =\prod_{t=1}^{T} p\left(w_{t} \mid w_{1}, \ldots, w_{t-1}\right) \\
& \approx \prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}, w_{t-2}\right)
\end{aligned}
$$

- How to get robust n-gram estimates $\left(p\left(w_{t} \mid w_{t-1}, w_{t-2}\right)\right)$?
- Smoothing
- E.g. Kneyser-Ney, Good-Turing
- Class-based language models

$$
p\left(w_{t} \mid w_{t-1}\right) \approx p\left(w_{t} \mid C\left(w_{t}\right)\right) p\left(C\left(w_{t}\right) \mid C\left(w_{t-1}\right)\right)
$$

Limitation of Word-based Language Models

- Words are inseparable whole units.
- E.g. "book" and "books" are distinct vocabulary units
- Especially problematic in morphologicallyrich languages:
- E.g. Arabic, Finnish, Russian, Turkish
- Many unseen word contexts
- High out-of-vocabulary rate
- High perplexity

Arabic k-t-b	
Kitaab	A book
Kitaab-iy	My book
Kitaabu-hum	Their book
Kutub	Books $\quad 67$

Solution: Word as Factors

- Decompose words into "factors" (e.g. stems)
- Build language model over factors: P (w|factors)
- Two approaches for decomposition
- Linear
stem suffix prefix stem suffix
- [e.g. Geutner, 1995]

- Parallel
[Kirchhoff et. al., JHU Workshop 2002]
[Bilmes \& Kirchhoff, NAACL/HLT 2003]

Different Kinds of Language Models

-cache language models (constantly adapting to a floating text) -trigger language models (can handle long distance effects)

- POS-based language models, LM over POS tags
-class-based language models based on semantic classes -multilevel n-gram language models (mix many LM together)
-interleaved language models (different LM for different parts of text)
- morpheme-based language models (separate words into core and modifyers)
-context free grammar language models (use simple and efficient LM-definition)
-decision tree language models (handle long distance effects, use rules)
- HMM language models (stochastic decision for combination of independent LMs)

