
1

Introduction to language

modeling

Dr. Mohamed Waleed Fakhr

AAST

Language Engineering Conference

22 December 2009

2

Topics

• Why a language model?

• Probability in brief

• Word prediction task

• Language modeling (N-grams)

– N-gram intro.

– Model evaluation

– Smoothing

• Other modeling approaches

3

Why a language model?

• Suppose a machine is required to translate:

“The human Race”.

• The word “Race” has at least 2 meanings, which

one to choose?

• Obviously, the choice depends on the “history”

or the “context” preceding the word “Race”. E.g.,

“the human race” versus “the dogs race”.

• A statistical language model can solve this

ambiguity by giving higher probability to the

correct meaning.

4

Probability in brief

• Joint probability: P(A,B) is the probability

that events A and B are simultaneously

true (observed together).

• Conditional probability: P(A|B): is the

probability that A is true given that B is

true (observed).

5

Relation between joint and conditional probabilities

• BAYES RULE:

P(A|B) = P(A,B)/P(B)

P(B|A) = P(A,B)/P(A)

Or;

P(A,B)= P(A).P(B|A) = P(B).P(A|B)

6

Chain Rule

• The joint probability:
P(A,B,C,D)=P(A).P(B|A).P(C|A,B).P(D|A,B,C)

• This will lend itself to the language modeling paradigm
as we will be concerned by the joint probability of the
occurrence of a word-sequence (W1,W2,W3,….Wn):

 P(W1,W2,W3,….Wn)

 which will be put in terms of conditional
probability terms:

• P(W1).P(W2|W1).P(W3|W1,W2)………

 (More of this later)

7

Language Modeling?

In the narrow sense, statistical language modeling
is concerned by estimating the joint probability of
a word sequence . P(W1,W2,W3,….Wn)

 This is always converted into conditional probs:
P(Next Word | History)

 e.g., P(W3|W1,W2)

i.e., can we predict the next word given the
previous words that have been observed?

In other words, if we have a History, find the Next-
Word that gives the highest prob.

8

Word Prediction

• Guess the next word...

 ... It is too late I want to go ???

... I notice three guys standing on the ???

• There are many sources of knowledge that can

be used to inform this task, including arbitrary

world knowledge and deeper history (It is too

late)

• But it turns out that we can do pretty well by

simply looking at the preceding words and

keeping track of some fairly simple counts.

9

Word Prediction
• We can formalize this task using what are

called N-gram models.

• N-grams are token sequences of length N.

• Our 2nd example contains the following 2-

grams (Bigrams)

– (I notice), (notice three), (three guys), (guys

standing), (standing on), (on the)

• Given knowledge of counts of N-grams

such as these, we can guess likely next

words in a sequence.

10

N-Gram Models

• More formally, we can use knowledge of

the counts of N-grams to assess the

conditional probability of candidate words

as the next word in a sequence.

• In doing so, we actually use them to

assess the joint probability of an entire

sequence of words. (chain rule).

11

Applications

• It turns out that being able to predict the next
word (or any linguistic unit) in a sequence is an
extremely useful thing to be able to do.

• As we’ll see, it lies at the core of the following
applications
– Automatic speech recognition

– Handwriting and character recognition

– Spelling correction

– Machine translation

– Information retrieval

– And many more.

124/29/2024

ASR

134/29/2024

Source Channel Model for
Machine Translation

SMT Architecture
Based on Bayes´ Decision

Rule:

ê = argmax{ p(e | f) }
= argmax{ p(e) p(f | e) }

15

Counting

• Simple counting lies at the core of any

probabilistic approach. So let’s first take a

look at what we’re counting.

– He stepped out into the hall, was delighted to

encounter a water brother.

• 13 tokens, 15 if we include “,” and “.” as separate

tokens.

• Assuming we include the comma and period, how

many bigrams are there?

16

Counting
• Not always that simple

– I do uh main- mainly business data processing

• Spoken language poses various challenges.

– Should we count “uh” and other fillers as tokens?

– What about the repetition of “mainly”? Should such do-

overs count twice or just once?

– The answers depend on the application.

• If we’re focusing on something like ASR to support indexing

for search, then “uh” isn’t helpful (it’s not likely to occur as a

query).

• But filled pauses are very useful in dialog management, so

we might want them there.

17

Counting: Types and Tokens

• How about

– They picnicked by the pool, then lay back on

the grass and looked at the stars.

• 18 tokens (again counting punctuation)

• But we might also note that “the” is used 3

times, so there are only 16 unique types

(as opposed to tokens).

• In going forward, we’ll have occasion to

focus on counting both types and tokens

of both words and N-grams.

18

Counting: Wordforms

• Should “cats” and “cat” count as the same

when we’re counting?

• How about “geese” and “goose”?

• Some terminology:

– Lemma: a set of lexical forms having the

same stem, major part of speech, and rough

word sense: (car, cars, automobile)

– Wordform: fully inflected surface form

• Again, we’ll have occasion to count both

lemmas, morphemes, and wordforms

19

Counting: Corpora
• So what happens when we look at large

bodies of text instead of single utterances?

• Brown et al (1992) large corpus of English
text
– 583 million wordform tokens

– 293,181 wordform types

• Google
– Crawl of 1,024,908,267,229 English tokens

– 13,588,391 wordform types

• That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?•Numbers

•Misspellings
•Names
•Acronyms
•etc

20

Language Modeling

• Back to word prediction

• We can model the word prediction task as
the ability to assess the conditional
probability of a word given the previous
words in the sequence

– P(wn|w1,w2…wn-1)

• We’ll call a statistical model that can
assess this a Language Model

21

Language Modeling

• How might we go about calculating such a

conditional probability?

– One way is to use the definition of conditional

probabilities and look for counts. So to get

– P(the | its water is so transparent that)

• By definition that’s

Count(its water is so transparent that the)

 Count(its water is so transparent that)

We can get each of those counts in a large

corpus.

22

Very Easy Estimate

• According to Google those counts are 5/9.

– Unfortunately... 2 of those were to these

slides... So maybe it’s really 3/7

– In any case, that’s not terribly convincing due

to the small numbers involved.

23

Language Modeling

• Unfortunately, for most sequences and for

most text collections we won’t get good

estimates from this method.

– What we’re likely to get is 0. Or worse 0/0.

• Clearly, we’ll have to be a little more

clever.

– Let’s use the chain rule of probability

– And a particularly useful independence

assumption.

24

The Chain Rule

• Recall the definition of conditional probabilities

• Rewriting:

• For sequences...
– P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• In general
– P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)(

),(
)|(

BP

BAP
BAP =

)|().(),(BAPBPBAP =

25

The Chain Rule

P(its water was so transparent)=
P(its)*

 P(water|its)*

 P(was|its water)*

 P(so|its water was)*

 P(transparent|its water was so)

26

Unfortunately

• There are still a lot of possible sentences

• In general, we’ll never be able to get

enough data to compute the statistics for

those longer prefixes

– Same problem we had for the strings

themselves

27

Independence Assumption

• Make the simplifying assumption

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|a)

• Or maybe

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|saw,a)

• That is, the probability in question is
independent of its earlier history.

28

Independence Assumption

• This particular kind of independence assumption
is called a Markov assumption after the Russian
mathematician Andrei Markov.

29

So for each component in the product replace with the

approximation (assuming a prefix of N)

 Bigram version



P(wn |w1
n−1)  P(wn |wn−N +1

n−1)

Markov Assumption



P(wn |w1
n−1)  P(wn |wn−1)

30

Estimating Bigram Probabilities

• The Maximum Likelihood

Estimate (MLE):



P(wi |wi−1) =
count(wi−1,wi)

count(wi−1)

31

Normalization

• For N-gram models to be probabilistically correct
they have to obey prob. Normalization
constraints:

• The sum over all words for the same context
(history) must be 1.

• The context may be one word (bigram) or two
words (trigram) or more.


−−

=
jallover

ij ContextWP 1)|(

32

An Example: bigrams

• <s> I am Sam </s>

• <s> Sam I am </s>

• <s> I do not like green eggs and ham </s>

33

estimates depend on the corpus

• The maximum likelihood estimate of some parameter of
a model M from a training set T

– Is the estimate that maximizes the likelihood of the training
set T given the model M

• Suppose the word Chinese occurs 400 times in a corpus
of a million words (Brown corpus)

• What is the probability that a random word from some
other text from the same distribution will be “Chinese”

• MLE estimate is 400/1000000 = .004

– This may be a bad estimate for some other corpus

34

Berkeley Restaurant Project

Sentences examples

• can you tell me about any good cantonese restaurants

close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are

available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

35

Bigram Counts

• Out of 9222 sentences

– e.g. “I want” occurred 827 times

36

Bigram Probabilities
• Divide bigram counts by prefix unigram

counts to get probabilities.

37

examples

• P(Want | I) = C(I Want) / C(I)

 = 827/2533 = 0.33

P(Food | Chinese) = C(Chinese Food) /

C(Chinese)

= 82/158 = 0.52

38

Bigram Estimates of Sentence

Probabilities

• P(<s> I want english food </s>) =

 P(i|<s>)*

 P(want|I)*

 P(english|want)*

 P(food|english)*

 P(</s>|food)*

 =.000031

39

Evaluation

• How do we know if our models are any
good?

– And in particular, how do we know if one
model is better than another?

40

Evaluation

• Standard method

– Train parameters of our model on a training set.

– Look at the models performance on some new data

• This is exactly what happens in the real world; we

want to know how our model performs on data we

haven’t seen

– So use a test set. A dataset which is different than

our training set, but is drawn from the same source

– Then we need an evaluation metric to tell us how

well our model is doing on the test set.

• One such metric is perplexity

41

Unknown Words

• But once we start looking at test data, we’ll
run into words that we haven’t seen before
(pretty much regardless of how much
training data you have) (zero unigrams)

• With an Open Vocabulary task

– Create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L, of size V

– From a dictionary or

– A subset of terms from the training set

• At text normalization phase, any training word not in L changed to
<UNK>

• Now we count that like a normal word

– At test time
• Use <UNK> counts for any word not in training

42

Perplexity

• Perplexity is the probability

of the test set (assigned by

the language model),

normalized by the number

of words:

• Chain rule:

• For bigrams:

• Minimizing perplexity is the same as maximizing
probability
– The best language model is one that best predicts

an unseen test set

43

Lower perplexity means a better

model

• Training 38 million words, test 1.5 million

words, WSJ (Wall-Street Journal)

44

Evaluating N-Gram Models

• Best evaluation for a language model

– Put model A into an application

• For example, a speech recognizer

– Evaluate the performance of the
application with model A

– Put model B into the application and
evaluate

– Compare performance of the application
with the two models

– Extrinsic evaluation

45

Difficulty of extrinsic (in-vivo)

evaluation of N-gram models
• Extrinsic evaluation

– This is really time-consuming

– Can take days to run an experiment

• So
– To evaluate N-grams we often use an intrinsic

evaluation, an approximation called perplexity

– But perplexity is a poor approximation unless the test
data looks similar to the training data

– So is generally only useful in pilot experiments

– But still, there is nothing like the real experiment!

46

N-gram Zero Counts

• For the English language,

– V2= 844 million possible bigrams...

– So, for a medium size training data, e.g.,

Shakespeare novels, 300,000 bigrams were found

Thus, 99.96% of the possible bigrams were never

seen (have zero entries in the table)

– Does that mean that any test sentence that contains

one of those bigrams should have a probability of 0?

47

N-gram Zero Counts

• Some of those zeros are really zeros...
– Things that really can’t or shouldn’t happen.

• On the other hand, some of them are just rare events.
– If the training corpus had been a little bigger they would have had a

count (probably a count of 1).

• Zipf’s Law (long tail phenomenon):
– A small number of events occur with high frequency

– A large number of events occur with low frequency

– You can quickly collect statistics on the high frequency events

– You might have to wait an arbitrarily long time to get valid statistics on
low frequency events

• Result:
– Our estimates are sparse ! We have no counts at all for the vast bulk

of things we want to estimate!

• Answer:
– Estimate the likelihood of unseen (zero count) N-grams!

– N-gram Smoothing techniques

48

Laplace Smoothing

• Also called add-one smoothing

• Just add one to all the counts!

• This adds extra V observations

(V is vocab. Size)

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

(making the volume N again)

)(

).1(1

VN

Nci

N +

+
=LaplaceP

49

Laplace-Smoothed Bigram Counts

50

Laplace-Smoothed Bigram

Probabilities

51

Reconstructed Counts

])2([

]1)12().[2(

)2(

1

)2(

1)12(

)2(

)2(

)2(

1)12(
)2|1(

VwC

wwCwC

wCVwC

wwC

wC

wC

VwC

wwC
wwP

+

+
=

+

+
=

+

+
=

52

Big Change to the Counts!

• C(want to) went from 608 to 238!

• P(to|want) from .66 to .26!

• Discount d= c*/c

– d for “Chinese food” = 0.1 !!! A 10x reduction

– So in general, Laplace is a blunt instrument

– Could use more fine-grained method (add-k)

• But Laplace smoothing not used for N-grams, as we

have much better methods

• Despite its flaws, Laplace (add-k) is however still used to

smooth other probabilistic models in NLP, especially

– For pilot studies

– in domains where the number of zeros isn’t so huge.

53

Better Smoothing

• Intuition used by many smoothing

algorithms, for example;

– Good-Turing

– Kneyser-Ney

– Witten-Bell

• Is to use the count of things we’ve seen

once to help estimate the count of things

we’ve never seen

54

Good-Turing
Josh Goodman Intuition

• Imagine you are fishing
– There are 8 species in this waters: carp, perch,

whitefish, trout, salmon, eel, catfish, bass

• You have caught
– 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel

= 18 fish

• How likely is it that the next fish caught is from a new
species (one not seen in our previous catch)?

– 3/18 (3 is number of events that seen once)

• Assuming so, how likely is it that next species is trout?

– Must be less than 1/18 because we just stole 3/18 of
our probability mass to use on unseen events

55

Good-Turing
Notation: Nx is the frequency-of-frequency-x

So N10=1

Number of fish species seen 10 times is 1 (carp)

N1=3

Number of fish species seen 1 time is 3 (trout, salmon,

eel)

To estimate total number of unseen species (seen 0

times)

Use number of species (bigrams) we’ve seen once (i.e. 3)

So, the estimated count c* for <unseen> is 3.

All other estimates are adjusted (down) to account for the

stolen mass given for the unseen events, using the formula:

56

GT Fish Example

57

Bigram Frequencies of

Frequencies and

GT Re-estimates

AP Newswire: 22million words, Berkeley: 9332 sentences

58

Backoff and Interpolation

• Another really useful source of knowledge

• If we are estimating:

– trigram p(z|x,y)

– but count(xyz) is zero

• Use info from:

– Bigram p(z|y)

• Or even:

– Unigram p(z)

• How to combine this trigram, bigram,
unigram info in a valid fashion?

59

Backoff Vs. Interpolation

1. Backoff: use trigram if you have it,

otherwise bigram, otherwise unigram

2. Interpolation: mix all three by weights

60

Interpolation

• Simple interpolation

• Lambdas conditional on context:

61

How to Set the Lambdas?
• Use a held-out, or development corpus

• Choose lambdas which maximize the

probability of some held-out data

– I.e. fix the N-gram probabilities

– Then search for lambda values that when

plugged into previous equation give largest

probability for held-out set

– Can use EM to do this search

– Can use direct search methods (Genetic,

Swarm, etc…)

62

Katz Backoff (very popular)

63

Why discounts P* and alpha?

• MLE probabilities sum to 1

• So if we used MLE probabilities but backed off to

lower order model when MLE prob is zero we

would be adding extra probability mass (it is like

in smoothing), and total probability would be

greater than 1. So, we have to do discounting.

64

OOV words: <UNK> word

• Out Of Vocabulary = OOV words

• create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L
changed to <UNK>

• Now we train its probabilities like a normal word

– At decoding time
• If text input: Use UNK probabilities for any word not in

training

65

Other Approaches

Class-based LMs

Morpheme-based LMs

Skip LMs

66

Class-based Language Models

• Standard word-based language models

• How to get robust n-gram estimates ()?

– Smoothing

• E.g. Kneyser-Ney, Good-Turing

– Class-based language models

p(w1,w2 ,...,wT) = p(wt |w1,...,wt−1)
t=1

T



 p(wt |wt−1,wt−2)
t=1

T



p(wt |wt−1)  p(wt |C(wt))p(C(wt) |C(wt−1))

p(wt |wt−1,wt−2)

67

Limitation of Word-based

Language Models
• Words are inseparable whole units.

– E.g. “book” and “books” are distinct vocabulary

units

• Especially problematic in morphologically-

rich languages:

– E.g. Arabic, Finnish, Russian, Turkish

– Many unseen word contexts

– High out-of-vocabulary rate

– High perplexity

Arabic k-t-b

Kitaab A book

Kitaab-iy My book

Kitaabu-hum Their book

Kutub Books

68

Solution: Word as Factors

• Decompose words into “factors” (e.g. stems)

• Build language model over factors: P(w|factors)

• Two approaches for decomposition

– Linear

• [e.g. Geutner, 1995]

– Parallel

[Kirchhoff et. al., JHU Workshop 2002]

[Bilmes & Kirchhoff, NAACL/HLT 2003]

WtWt-2 Wt-1

StSt-2 St-1

MtMt-2 Mt-1

stem suffixprefixsuffixstem

Different Kinds of Language

Models
•cache language models (constantly adapting to a floating text)

•trigger language models (can handle long distance effects)

•POS-based language models, LM over POS tags

•class-based language models based on semantic classes

•multilevel n-gram language models (mix many LM together)

•interleaved language models (different LM for different parts

of text)

•morpheme-based language models (separate words into core

and modifyers)

•context free grammar language models (use simple and

efficient LM-definition)

•decision tree language models (handle long distance effects,

use rules)

•HMM language models (stochastic decision for combination of

independent LMs)

../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cache/cache.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/multilevel/multilevel.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/interleave/interleave.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/morpheme/morpheme.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cfg/cfg.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/tree/tree.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/hmm/hmm.html

	Slide 1: Introduction to language modeling
	Slide 2: Topics
	Slide 3: Why a language model?
	Slide 4: Probability in brief
	Slide 5: Relation between joint and conditional probabilities
	Slide 6: Chain Rule
	Slide 7: Language Modeling?
	Slide 8: Word Prediction
	Slide 9: Word Prediction
	Slide 10: N-Gram Models
	Slide 11: Applications
	Slide 12
	Slide 13
	Slide 14: SMT Architecture
	Slide 15: Counting
	Slide 16: Counting
	Slide 17: Counting: Types and Tokens
	Slide 18: Counting: Wordforms
	Slide 19: Counting: Corpora
	Slide 20: Language Modeling
	Slide 21: Language Modeling
	Slide 22: Very Easy Estimate
	Slide 23: Language Modeling
	Slide 24: The Chain Rule
	Slide 25: The Chain Rule
	Slide 26: Unfortunately
	Slide 27: Independence Assumption
	Slide 28: Independence Assumption
	Slide 29: Markov Assumption
	Slide 30: Estimating Bigram Probabilities
	Slide 31: Normalization
	Slide 32: An Example: bigrams
	Slide 33: estimates depend on the corpus
	Slide 34: Berkeley Restaurant Project Sentences examples
	Slide 35: Bigram Counts
	Slide 36: Bigram Probabilities
	Slide 37
	Slide 38: Bigram Estimates of Sentence Probabilities
	Slide 39: Evaluation
	Slide 40: Evaluation
	Slide 41: Unknown Words
	Slide 42: Perplexity
	Slide 43: Lower perplexity means a better model
	Slide 44: Evaluating N-Gram Models
	Slide 45: Difficulty of extrinsic (in-vivo) evaluation of N-gram models
	Slide 46: N-gram Zero Counts
	Slide 47: N-gram Zero Counts
	Slide 48: Laplace Smoothing
	Slide 49: Laplace-Smoothed Bigram Counts
	Slide 50: Laplace-Smoothed Bigram Probabilities
	Slide 51: Reconstructed Counts
	Slide 52: Big Change to the Counts!
	Slide 53: Better Smoothing
	Slide 54: Good-Turing Josh Goodman Intuition
	Slide 55: Good-Turing
	Slide 56: GT Fish Example
	Slide 57: Bigram Frequencies of Frequencies and GT Re-estimates
	Slide 58: Backoff and Interpolation
	Slide 59: Backoff Vs. Interpolation
	Slide 60: Interpolation
	Slide 61: How to Set the Lambdas?
	Slide 62: Katz Backoff (very popular)
	Slide 63: Why discounts P* and alpha?
	Slide 64: OOV words: <UNK> word
	Slide 65: Other Approaches
	Slide 66: Class-based Language Models
	Slide 67
	Slide 68
	Slide 69: Different Kinds of Language Models

