
Concepts

Unit (Neurons)

A unit often refers to the activation 
function in a layer by which the 
inputs are transformed via a 
nonlinear activation function (for 
example by the logistic sigmoid 
function). Usually, a unit has 
several incoming connections and 
several outgoing connections.

Input Layer Comprised of multiple Real-Valued inputs. Each input 
must be linearly independent from each other.

Hidden Layers

Layers other than the input and 
output layers. A layer is the 
highest-level building block in 
deep learning. A layer is a 
container that usually receives 
weighted input, transforms it with 
a set of mostly non-linear 
functions and then passes these 
values as output to the next 
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in 
several ways. First, the gradient of the loss over a mini-batch is an estimate of the 
gradient over the training set, whose quality improves as the batch size increases. 
Second, computation over a batch can be much more efficient than m computations for 
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and 
at each step we consider a mini- batch x1...m 
of size m. The mini-batch is used to approx- 
imate the gradient of the loss function with 
respect to the parameters.

Cost/Loss(Min) 
Objective(Max) 
Functions

Maximum 
Likelihood 
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares 
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ, 
given outcomes x, is equal to the probability (density) assumed for those 
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the 
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same 
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood 
estimation and related techniques.

In general, for a fixed set of data and underlying 
statistical model, the method of maximum likelihood 
selects the set of values of the model parameters that 
maximizes the likelihood function. Intuitively, this 
maximizes the "agreement" of the selected model with 
the observed data, and for discrete random variables it 
indeed maximizes the probability of the observed data 
under the resulting distribution. Maximum-likelihood 
estimation gives a unified approach to estimation, 
which is well-defined in the case of the normal 
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss 
function in machine learning and optimization. 
The true probability pi is the true label, and 
the given distribution qi  is the predicted value 
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when 
using least squares techniques. It is often more mathematically 
tractable than other loss functions because of the properties of 
variances, as well as being symmetric: an error above the target 
causes the same loss as the same magnitude of error below the target. 
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently 
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for 
training classifiers. For an intended output t = 
±1 and a classifier score y, the hinge loss of 
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between 
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of 
measure theory, let P and Q denote two 
probability measures that are absolutely 

continuous with respect to a third probability 
measure λ. The square of the Hellinger 

distance between P and Q is defined as the 
quantity

Kullback-Leibler Divengence

Is a measure of how one probability 
distribution diverges from a second expected 
probability distribution. Applications include 
characterizing the relative (Shannon) entropy 
in information systems, randomness in 
continuous time-series, and information gain 
when comparing statistical models of 
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an 
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a 
perceptual measure, it is intended to reflect 
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Regularization

L1 norm Manhattan Distance

L1-norm is also known as least absolute 
deviations (LAD), least absolute errors (LAE). It 
is basically minimizing the sum of the 
absolute differences (S) between the target 
value and the estimated values.

L2 norm Euclidean Distance
L2-norm is also known as least squares. It is 
basically minimizing the sum of the square of 
the differences (S) between the target value 
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be 
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing 
complex co-adaptations on training data. It is a very efficient way of performing model 
averaging with neural networks. The term "dropout" refers to dropping out units (both 
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each 
column and an L1 norm over all columns. It 
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to 
the overall average of the functions across all tasks. This is useful for 
expressing prior information that each task is expected to share similarities 
with each other task. An example is predicting blood iron levels measured at 
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces 
similarity between tasks within the same 
cluster. This can capture more complex prior 
information. This technique has been used to 
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between 
tasks can be defined by a function. The 
regularizer encourages the model to learn 
similar functions for similar tasks.

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data 
normalization it is reasonable to assume that 
approximately half of the weights will be 
positive and half of them will be negative. A 
reasonable-sounding idea then might be to 
set all the initial weights to zero, which you 
expect to be the “best guess” in expectation. 

But, this turns out to be a mistake, because if 
every neuron in the network computes the 
same output, then they will also all compute 
the same gradients during back-propagation 
and undergo the exact same parameter 
updates. In other words, there is no source of 
asymmetry between neurons if their weights 
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very 
close to zero, but not identically zero. In this 
way, you can random these neurons to small 
numbers which are very close to zero, and it is 
treated as symmetry breaking. The idea is that 
the neurons are all random and unique in the 
beginning, so they will compute distinct 
updates and integrate themselves as diverse 
parts of the full network.

The implementation for weights might simply 
drawing values from a normal distribution with 
zero mean, and unit standard deviation. It is 
also possible to use small numbers drawn 
from a uniform distribution, but this seems to 
have relatively little impact on the final 
performance in practice.

Calibrating the Variances

One problem with the above suggestion is 
that the distribution of the outputs from a 
randomly initialized neuron has a variance that 
grows with the number of inputs. It turns out 
that you can normalize the variance of each 
neuron's output to 1 by scaling its weight 
vector by the square root of its fan-in (i.e., its 
number of inputs)

This ensures that all neurons in the network 
initially have approximately the same output 
distribution and empirically improves the rate 
of convergence. The detailed derivations can 
be found from Page. 18 to 23 of the slides. 
Please note that, in the derivations, it does 
not consider the influence of ReLU neurons.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

AdagradAdaptive learning rates for each parameter

Learning Rate

Neural networks are often trained by gradient 
descent on the weights. This means at each 
iteration we use backpropagation to calculate 
the derivative of the loss function with respect 
to each weight and subtract it from that 
weight. 

However, if you actually try that, the weights 
will change far too much each iteration, which 
will make them “overcorrect” and the loss will 
actually increase/diverge. So in practice, 
people usually multiply each derivative by a 
small value called the “learning rate” before 
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the 
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical 
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration 
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Backpropagation

Is a method used in artificial neural networks to 
calculate the error contribution of each neuron 
after a batch of data. It calculates the gradient 
of the loss function. It is commonly used in the 
gradient descent optimization algorithm. It is 
also called backward propagation of errors, 
because the error is calculated at the output 
and distributed back through the network 
layers.Neural Network taking 4 dimension vector 

representation of words.

In this method, we reuse partial derivatives 
computed for higher layers in lower layers, for 
efficiency. 

Intuition for backpropagation

Simple Example (Circuits)Another Example (Circuits)

Simple Example (Flowgraphs)

Activation Functions

Defines the output of that node given an input 
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity


Architectures Strategy

1. Select Network Structure appropriate for 
problem

Structure: Single words, fixed windows, 
sentence based, document level; bag of 
words, recursive vs. recurrent, CNN

Nonlinearity (Activation Functions)

2. Check for implementation bugs with 
gradient checks

1. Implement your gradient

2. Implement a finite difference computation 
by looping through the parameters of your 
network, adding and subtracting a small 
epsilon ( 10-4) and estimate derivatives

3. Compare the two and make sure they are 
almost the same

Using Gradient Checks

If you gradient fails and you don’t know why?
Simplify your model until you have no bug!

What now? Create a very tiny synthetic model 
and dataset

Example: Start from simplest model then go 
to what you want:

Only softmax on fixed input

Backprop into word vectors and softmax

Add single unit single hidden layer

Add multi unit single layer

Add second layer single unit, add multiple 
units, bias • Add one softmax on top, then 
two softmax layers

Add bias

3. Parameter initialization

Initialize hidden layer biases to 0 and output 
(or reconstruction) biases to optimal value if 
weights were 0 (e.g., mean target or inverse 
sigmoid of mean target).

Initialize weights  Uniform(−r, r), r inversely 
proportional to fan-in (previous layer size) and 
fan-out (next layer size):

4. Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Ordinary gradient descent as a batch method 
is very slow, should never be used. Use 2nd 
order batch method such as L-BFGS.

On large datasets, SGD usually wins over all 
batch methods. On smaller datasets L-BFGS 
or Conjugate Gradients win. Large-batch L-
BFGS extends the reach of L-BFGS [Le et al. 
ICML 2011].

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Most commonly used now, Size of each mini 
batch B: 20 to 1000

Helps parallelizing any model by computing 
gradients for multiple elements of the batch in 
parallel

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

Reduce global learning rate when using a lot 
of momentum

Update Rule
v is initialized at 0

Momentum often increased after some 
epochs (0.5 à 0.99)

Adagrad

Adaptive learning rates for each parameter!

Learning rate is adapting differently for each 
parameter and rare parameters get larger 
updates than frequently occurring parameters. 
Word vectors!

5. Check if the model is powerful enough to 
overfit

If not, change model structure or make model “larger”

If you can overfit: Regularize to prevent 
overfitting:

Simple first step: Reduce model size by 
lowering number of units and layers and other 
parameters

Standard L1 or L2 regularization on weights

Early Stopping: Use parameters that gave 
best validation error

Sparsity constraints on hidden activations, 
e.g., add to cost:

Dropout

Training time: at each instance of evaluation 
(in online SGD-training), randomly set 50% of 
the inputs to each neuron to 0

Test time: halve the model weights (now twice 
as many) This prevents feature co-adaptation: 
A feature cannot only be useful in the 
presence of particular other features

In a single layer: A kind of middle-ground 
between Naïve Bayes (where all feature 
weights are set independently) and logistic 
regression models (where weights are set in 
the context of all others)

Can be thought of as a form of model bagging

It also acts as a strong regularizer

RNNs (Recursive)

Is a kind of deep neural 
network created by applying 
the same set of weights 
recursively over a structure, to 
produce a structured prediction 
over variable-size input 
structures, or a scalar 
prediction on it, by traversing a 
given structure in topological 
order.

RNNs have been successful for instance in 
learning sequence and tree structures in 
natural language processing, mainly phrase 
and sentence continuous representations 
based on word embedding.

RNNs (Recurrent)
Is a class of artificial neural network where connections between units form a 
directed cycle. This allows it to exhibit dynamic temporal behavior. Unlike 
feedforward neural networks, RNNs can use their internal memory to process 
arbitrary sequences of inputs. 

This makes them applicable to tasks such as 
unsegmented, connected handwriting recognition or 
speech recognition.

Convolutional Neural Networks (CNN)

They have applications in image and video 
recognition, recommender systems and 
natural language processing.

Pooling

Convolution

Subsampling

Auto-Encoders

Is an artificial neural network used for unsupervised 
learning of efficient codings.

The aim of an autoencoder 
is to learn a representation 
(encoding) for a set of data, 
typically for the purpose of 
dimensionality reduction. 
Recently, the autoencoder 
concept has become more 
widely used for learning 
generative models of data.

GANs

GANs or Generative 
Adversarial Networks are a 
class of artificial intelligence 
algorithms used in 
unsupervised machine 
learning, implemented by a 
system of two neural networks 
contesting with each other in a 
zero-sum game framework.

LSTMs

Long short-term memory - It is a type of recurrent (RNN), allowing 
data to flow both forwards and backwards within the network.

An LSTM is well-suited to learn from 
experience to classify, process and predict 
time series given time lags of unknown size 
and bound between important events. 
Relative insensitivity to gap length gives an 
advantage to LSTM over alternative RNNs, 
hidden Markov models and other sequence 
learning methods in numerous applications.

Feed Forward

Is an artificial neural network wherein connections between the units do not form a 
cycle. In this network, the information moves in only one direction, forward, from the 
input nodes, through the hidden nodes (if any) and to the output nodes. There are no 
cycles or loops in the network.

Kinds

Single-Layer Perceptron

The inputs are fed directly to the outputs via a 
series of weights. By adding an Logistic 
activation function to the outputs, the model 
is identical to a classical Logistic Regression 
model.

Multi-Layer Perceptron

This class of networks consists of multiple 
layers of computational units, usually 
interconnected in a feed-forward way. Each 
neuron in one layer has directed connections 
to the neurons of the subsequent layer. In 
many applications the units of these networks 
apply a sigmoid function as an activation 
function.



Tensorflow

Packages

tf Main Steps

1. Create the Model

2. Define Target

3. Define Loss function and Optimizer

4. Define the Session and Initialise Variables

5. Train the Model

6. Test Trained Model

tf.estimator

TensorFlow’s high-level machine learning API 
(tf.estimator) makes it easy to configure, train, and 
evaluate a variety of machine learning models.

tf.estimator.LinearClassifier: Constructs a linear classification model.

tf.estimator.LinearRegressor: Constructs a linear regression model.

tf.estimator.DNNClassifier: Construct a neural network classification model.

tf.estimator.DNNRegressor: Construct a neural network regression model.

tf.estimator.DNNLinearCombinedClassifier: Construct a neural network and linear combined classification model.

tf.estimator.DNNRegressor: Construct a neural network and linear combined regression model.

Main Steps

1. Define Feature Columns 

FeatureColumns are the primary way of 
encoding features for pre-canned tf.learn 
Estimators.

Categorical Numerical

When using FeatureColumns with tf.learn 
models, the type of feature column you 
should choose depends on the feature type 
and  the model type.

Continuous Features Can be represented by real_valued_column

Categorical Features

Can be represented by any 
sparse_column_with_* column 
(sparse_column_with_keys, 
sparse_column_with_vocabulary_file, 
sparse_column_with_hash_bucket, 
sparse_column_with_integerized_feature

2. Define your Layers, or use a prebuilt model

Using a pre-built Logistic Regression 
Classifier

3. Write the input_fn function This function holds the actual data (features 
and labels). Features is a python dictionary.

4. Train the model
Using the fit function, on the input_fn. Notice 
that the feature columns are fed to the model 
as arguments.

5. Predict and Evaluate Using the eval_input_fn defined previously.

Comparison to Numpy

Does lazy evaluation. Need to build the 
graph, and then run it in a session.

Main Components

Variables

Stateful nodes that output their current value, 
their state is retained across multiple 
executions of the graph.

Mostly Parameters we’re interested in tuning, 
such as Weights (W) and Biases (b).

Sharing

Variables can be shared by Explicitly passing 
tf.Variable objects around, or...

Implicitly wrapping tf.Variable objects within 
tf.variable_scope objects.Scopes

tf.variable_scope()

Provides simple name spacing to avoid cases 
when querying

tf.get_variable()Creates/Access variables from a variable 
scope

Placeholders
Nodes whose value is fed at execution time.

Inputs, Features (X) and Labels (y)

Mathematical 
OperationsMatMul, Add, ReLU, etc.

Graph
NodesThey are Operations, containing any number 

of inputs and outputs.

EdgesThe tensors that flow between the nodes.

Session

It a binding to a particular execution context: CPU, GPU.

Running a SessionInputs

FetchesList of graph nodes. Returns the output of 
these nodes.

Feeds

Dictionary mapping from graph nodes to 
concrete values.

Specified the value of each graph node given 
in the dictionary.

Phases

1. Construction

Assembles a computational graph

The computation graph has no numerical 
value until evaluated. 

All computations add nodes to global default graph

2. Execution

A Session object encapsulates the environment 
in which Tensor objects are evaluated

Uses a session to execute ops in the graph

Declared variables must be initialised before 
they have values.

When you train a model you use variables to hold and update 
parameters. Variables are in-memory buffers containing tensors.

TensorboardTensorFlow has some neat built-in visualization tools (TensorBoard).

Intuition

TensorFlow is a deep learning library recently open-sourced by 
Google. It provides primitives for defining functions on tensors and 
automatically computing their derivatives, expressed as a graph.

The Tensorflow Graph is build to contain all placeholders for X and y, 
all variables for W’s and b’s, all mathematical operations, the cost 
function, and the optimisation procedure. Then, at runtime, the values 
for the data are fed into that Graph, by placing the data batches in 
the placeholders and running the Graph.

Each node in the Graph can then be connected to each other node 
over the network, and thus running Tensorflow models can be 
parallelised.

https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor

